Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Obesity (Silver Spring) ; 32(5): 857-870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426232

RESUMEN

OBJECTIVE: Big Data are increasingly used in obesity and nutrition research to gain new insights and derive personalized guidance; however, this data in raw form are often not usable. Substantial preprocessing, which requires machine learning (ML), human judgment, and specialized software, is required to transform Big Data into artificial intelligence (AI)- and ML-ready data. These preprocessing steps are the most complex part of the entire modeling pipeline. Understanding the complexity of these steps by the end user is critical for reducing misunderstanding, faulty interpretation, and erroneous downstream conclusions. METHODS: We reviewed three popular obesity/nutrition Big Data sources: microbiome, metabolomics, and accelerometry. The preprocessing pipelines, specialized software, challenges, and how decisions impact final AI- and ML-ready products were detailed. RESULTS: Opportunities for advances to improve quality control, speed of preprocessing, and intelligent end user consumption were presented. CONCLUSIONS: Big Data have the exciting potential for identifying new modifiable factors that impact obesity research. However, to ensure accurate interpretation of conclusions arising from Big Data, the choices involved in preparing AI- and ML-ready data need to be transparent to investigators and clinicians relying on the conclusions.

2.
Pediatr Res ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509226

RESUMEN

BACKGROUND: Gut-derived metabolites, products of microbial and host co-metabolism, may inform mechanisms underlying children's neurodevelopment. We investigated whether infant fecal metabolites were related to toddler social behavior. METHODS: Stool samples collected from 6-week-olds (n = 86) and 1-year-olds (n = 209) in the New Hampshire Birth Cohort Study (NHBCS) were analyzed using nuclear magnetic resonance spectroscopy metabolomics. Autism-related behavior in 3-year-olds was assessed by caregivers using the Social Responsiveness Scale (SRS-2). To assess the association between metabolites and SRS-2 scores, we used a traditional single-metabolite approach, quantitative metabolite set enrichment (QEA), and self-organizing maps (SOMs). RESULTS: Using a single-metabolite approach and QEA, no individual fecal metabolite or metabolite set at either age was associated with SRS-2 scores. Using the SOM method, fecal metabolites of six-week-olds organized into four profiles, which were unrelated to SRS-2 scores. In 1-year-olds, one of twelve fecal metabolite profiles was associated with fewer autism-related behaviors, with SRS-2 scores 3.4 (95%CI: -7, 0.2) points lower than the referent group. This profile had higher concentrations of lactate and lower concentrations of short chain fatty acids than the reference. CONCLUSIONS: We uncovered metabolic profiles in infant stool associated with subsequent social behavior, highlighting one potential mechanism by which gut bacteria may influence neurobehavior. IMPACT: Differences in host and microbial metabolism may explain variability in neurobehavioral phenotypes, but prior studies do not have consistent results. We applied three statistical techniques to explore fecal metabolite differences related to social behavior, including self-organizing maps (SOMs), a novel machine learning algorithm. A 1-year-old fecal metabolite pattern characterized by high lactate and low short-chain fatty acid concentrations, identified using SOMs, was associated with social behavior less indicative of autism spectrum disorder. Our findings suggest that social behavior may be related to metabolite profiles and that future studies may uncover novel findings by applying the SOM algorithm.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226418

RESUMEN

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Asunto(s)
Antineoplásicos , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Calcio/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Ácidos Grasos/metabolismo , Lípidos , Pulmón/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPV/metabolismo
4.
Sci Rep ; 13(1): 16728, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794065

RESUMEN

This study used untargeted proteomics to compare blood proteomic profiles in two groups of adults that differed widely in lifestyle habits. A total of 52 subjects in the lifestyle group (LIFE) (28 males, 24 females) and 52 in the control group (CON) (27 males, 25 females) participated in this cross-sectional study. Age, education level, marital status, and height did not differ significantly between LIFE and CON groups. The LIFE and CON groups differed markedly in body composition, physical activity patterns, dietary intake patterns, disease risk factor prevalence, blood measures of inflammation, triglycerides, HDL-cholesterol, glucose, and insulin, weight-adjusted leg/back and handgrip strength, and mood states. The proteomics analysis showed strong group differences for 39 of 725 proteins identified in dried blood spot samples. Of these, 18 were downregulated in the LIFE group and collectively indicated a lower innate immune activation signature. A total of 21 proteins were upregulated in the LIFE group and supported greater lipoprotein metabolism and HDL remodeling. Lifestyle-related habits and biomarkers were probed and the variance (> 50%) in proteomic profiles was best explained by group contrasts in indicators of adiposity. This cross-sectional study established that a relatively small number of proteins are associated with good lifestyle habits.


Asunto(s)
Fuerza de la Mano , Proteómica , Adulto , Masculino , Femenino , Humanos , Estudios Transversales , Factores de Riesgo , Triglicéridos , Estilo de Vida , Estilo de Vida Saludable , HDL-Colesterol , Inmunidad Innata , Índice de Masa Corporal
5.
Front Nutr ; 10: 1144131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528997

RESUMEN

Goal: Body mass index (BMI) in early pregnancy is a critical risk factor for hypertensive disorders of pregnancy (HDP). The pathobiology of the interplay between BMI and HDP is not fully understood and represents the focus of this investigation. Methods: BMI and 1st-trimester serum samples were obtained from the Global Alliance to Prevent Prematurity and Stillbirth repository for 154 women (105 without HDP and 49 with HDP). Metabotyping was conducted using ultra-high-performance liquid-chromatography high-resolution mass spectrometry (UHPLC HR-MS). Multivariable linear regression and logistic models were used to determine metabolites and pathway perturbations associated with BMI in women with and without HDP, and to determine metabolites and pathway perturbations associated with HDP for women in categories of obese, overweight, and normal weight based on the 1st trimester BMI. These outcome-associated signals were identified or annotated by matching against an in-house physical standards library and public database. Pathway analysis was conducted by the Mummichog algorithm in MetaboAnalyst. Result: Vitamin D3 and lysine metabolism were enriched to associate with BMI for women with and without HDP. Tryptophan metabolism enrichment was associated with HDP in all the BMI categories. Pregnant women who developed HDP showed more metabolic perturbations with BMI (continuous) than those without HDP in their 1st-trimester serum. The HDP-associated pathways for women with normal weight indicated inflammation and immune responses. In contrast, the HDP-associated pathways for women of overweight and obese BMI indicated metabolic syndromes with disorders in glucose, protein, and amino acid, lipid and bile acid metabolism, and oxidative and inflammatory stress. Conclusion: High first-trimester BMI indicates underlying metabolic syndromes, which play critical roles in HDP development. Vitamin D3 and tryptophan metabolism may be the targets to guide nutritional interventions to mitigate metabolic and inflammatory stress in pregnancy and reduce the onset of HDP.

6.
Am J Physiol Renal Physiol ; 325(4): F491-F502, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589050

RESUMEN

Obesity is a global epidemic and risk factor for the development of chronic kidney disease. Obesity induces systemic changes in metabolism, but how it affects kidney metabolism specifically is not known. Zebrafish have previously been shown to develop obesity-related kidney pathology and dysfunction when fed hypercaloric diets. To understand the direct effects of obesity on kidney metabolic function, we treated zebrafish for 8 wk with a control and an overfeeding diet. At the end of treatment, we assessed changes in kidney and fish weights and used electron microscopy to evaluate cell ultrastructure. We then performed an untargeted metabolomic analysis on the kidney tissue of fish using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry and used mummichog and gene set enrichment analysis to uncover differentially affected metabolic pathways. Kidney metabolomes differed significantly and consistently between the control and overfed diets. Among 9,593 features, we identified 235 that were significantly different (P < 0.05) between groups (125 upregulated in overfed diet, 110 downregulated). Pathway analysis demonstrated perturbations in glycolysis and fatty acid synthesis pathways, and analysis of specific metabolites points to perturbations in tryptophan metabolism. Our key findings show that diet-induced obesity leads to metabolic changes in the kidney tissue itself and implicates specific metabolic pathways, including glycolysis and tryptophan metabolism in the pathogenesis of obesity-related kidney disease, demonstrating the power of untargeted metabolomics to identify pathways of interest by directly interrogating kidney tissue.NEW & NOTEWORTHY Obesity causes systemic metabolic dysfunction, but how this affects kidney metabolism is less understood. This study used ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry to analyze the kidneys of overfed zebrafish. Metabolites in the kidneys of obese zebrafish revealed perturbations in metabolic pathways including glycolysis and tryptophan metabolism. These data suggest obesity alters metabolism within the kidney, which may play an important role in obesity-related kidney dysfunction.


Asunto(s)
Insuficiencia Renal Crónica , Pez Cebra , Animales , Triptófano , Riñón , Insuficiencia Renal Crónica/etiología , Obesidad
7.
Metabolites ; 13(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512560

RESUMEN

Caloric restriction and aerobic and resistance exercise are safe and effective lifestyle interventions for achieving weight loss in the obese older population (>65 years) and may improve physical function and quality of life. However, individual responses are heterogeneous. Our goal was to explore the use of untargeted metabolomics to identify metabolic phenotypes associated with achieving weight loss after a multi-component weight loss intervention. Forty-two older adults with obesity (body mass index, BMI, ≥30 kg/m2) participated in a six-month telehealth-based weight loss intervention. Each received weekly dietitian visits and twice-weekly physical therapist-led group strength training classes with a prescription for aerobic exercise. We categorized responders' weight loss using a 5% loss of initial body weight as a cutoff. Baseline serum samples were analyzed to determine the variable importance to the projection (VIP) of signals that differentiated the responder status of metabolic profiles. Pathway enrichment analysis was conducted in Metaboanalyst. Baseline data did not differ significantly. Weight loss was 7.2 ± 2.5 kg for the 22 responders, and 2.0 ± 2.0 kg for the 20 non-responders. Mummichog pathway enrichment analysis revealed that perturbations were most significant for caffeine and caffeine-related metabolism (p = 0.00028). Caffeine and related metabolites, which were all increased in responders, included 1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, fold change (FC) = 1.9), theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028, FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-methyluracil (VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023, FC = 2.3), and 1,7-dimethyl uric acid (VIP = 2.0, p = 0.035, FC = 2.2). Increased levels of phytochemicals and microbiome-related metabolites were also found in responders compared to non-responders. In this pilot weight loss intervention, older adults with obesity and evidence of significant enrichment for caffeine metabolism were more likely to achieve ≥5% weight loss. Further studies are needed to examine these associations in prospective cohorts and larger randomized trials.

8.
Metabolites ; 13(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37512572

RESUMEN

This study aimed to investigate metabolic changes following the acquisition of resistance to doxorubicin in the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Two drug-resistant cell lines, DOX-RES-50 and DOX-RES-100, were generated by treating MDA-MB-231 cells with doxorubicin for 24 h and allowing them to recover for six weeks. Both drug-resistant cell lines demonstrated an increase in doxorubicin IC50 values, indicating acquired drug resistance. Metabolomics analysis showed clear separation between the parental MDA-MB-231 cell line and the drug-resistant cell lines. Pathway analysis revealed that arginine and proline metabolism, glutathione metabolism, and beta-alanine metabolism were significantly perturbed in the drug-resistant cell lines compared to the parental cell line. After matching signals to an in-house library of reference standards, significant decreases in short- and medium-chain acylcarnitines and significant increases in long-chain acylcarnitines, 5-oxoproline, and 7-ketodeoxycholic acid were observed in the resistant cell lines as compared to the parental MDA-MB-231 cell line. In addition to baseline metabolic differences, we also investigated differences in metabolic responses in resistant cell lines upon a second exposure at multiple concentrations. Results indicate that whereas the parental MDA-MB-231 cell line had many metabolites that responded to doxorubicin in a dose-dependent manner, the two resistant cell lines lost a dose-dependent response for the majority of these metabolites. The study's findings provide insight into how metabolism is altered during the acquisition of resistance in TNBC cells and how the metabolic response to doxorubicin changes upon repeated treatment. This information can potentially identify novel targets to prevent or reverse multi-drug resistance in TNBC, and also demonstrate the usefulness of metabolomics technology in identifying new mechanisms of drug resistance in cancer and potential drug targets.

9.
Kidney Int Rep ; 8(6): 1239-1254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284673

RESUMEN

Introduction: Nephrotic syndrome (NS) occurs commonly in children with glomerular disease and glucocorticoids (GCs) are the mainstay treatment. Steroid resistant NS (SRNS) develops in 15% to 20% of children, increasing the risk of chronic kidney disease compared to steroid sensitive NS (SSNS). NS pathogenesis is unclear in most children, and no biomarkers exist that predict the development of pediatric SRNS. Methods: We studied a unique patient cohort with plasma specimens collected before GC treatment, yielding a disease-only sample not confounded by steroid-induced gene expression changes (SSNS n = 8; SRNS n = 7). A novel "patient-specific" bioinformatic approach merged paired pretreatment and posttreatment proteomic and metabolomic data and identified candidate SRNS biomarkers and altered molecular pathways in SRNS versus SSNS. Results: Joint pathway analyses revealed perturbations in nicotinate or nicotinamide and butanoate metabolic pathways in patients with SRNS. Patients with SSNS had perturbations of lysine degradation, mucin type O-glycan biosynthesis, and glycolysis or gluconeogenesis pathways. Molecular analyses revealed frequent alteration of molecules within these pathways that had not been observed by separate proteomic and metabolomic studies. We observed upregulation of NAMPT, NMNAT1, and SETMAR in patients with SRNS, in contrast to upregulation of ALDH1B1, ACAT1, AASS, ENPP1, and pyruvate in patients with SSNS. Pyruvate regulation was the change seen in our previous analysis; all other targets were novel. Immunoblotting confirmed increased NAMPT expression in SRNS and increased ALDH1B1 and ACAT1 expression in SSNS, following GC treatment. Conclusion: These studies confirmed that a novel "patient-specific" bioinformatic approach can integrate disparate omics datasets and identify candidate SRNS biomarkers not observed by separate proteomic or metabolomic analysis.

10.
Front Pharmacol ; 14: 1136317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063293

RESUMEN

ClpP activators ONC201 and related small molecules (TR compounds, Madera Therapeutics), have demonstrated significant anti-cancer potential in vitro and in vivo studies, including clinical trials for refractory solid tumors. Though progress has been made in identifying specific phenotypic outcomes following ClpP activation, the exact mechanism by which ClpP activation leads to broad anti-cancer activity has yet to be fully elucidated. In this study, we utilized a multi-omics approach to identify the ClpP-dependent proteomic, transcriptomic, and metabolomic changes resulting from ONC201 or the TR compound TR-57 in triple-negative breast cancer cells. Applying mass spectrometry-based methods of proteomics and metabolomics, we identified ∼8,000 proteins and 588 metabolites, respectively. From proteomics data, 113 (ONC201) and 191 (TR-57) proteins significantly increased and 572 (ONC201) and 686 (TR-57) proteins significantly decreased in this study. Gene ontological (GO) analysis revealed strong similarities between proteins up- or downregulated by ONC201 or TR-57 treatment. Notably, this included the downregulation of many mitochondrial processes and proteins, including mitochondrial translation and mitochondrial matrix proteins. We performed a large-scale transcriptomic analysis of WT SUM159 cells, identifying ∼7,700 transcripts (746 and 1,100 significantly increasing, 795 and 1,013 significantly decreasing in ONC201 and TR-57 treated cells, respectively). Less than 21% of these genes were affected by these compounds in ClpP null cells. GO analysis of these data demonstrated additional similarity of response to ONC201 and TR-57, including a decrease in transcripts related to the mitochondrial inner membrane and matrix, cell cycle, and nucleus, and increases in other nuclear transcripts and transcripts related to metal-ion binding. Comparison of response between both compounds demonstrated a highly similar response in all -omics datasets. Analysis of metabolites also revealed significant similarities between ONC201 and TR-57 with increases in α-ketoglutarate and 2-hydroxyglutaric acid and decreased ureidosuccinic acid, L-ascorbic acid, L-serine, and cytidine observed following ClpP activation in TNBC cells. Further analysis identified multiple pathways that were specifically impacted by ClpP activation, including ATF4 activation, heme biosynthesis, and the citrulline/urea cycle. In summary the results of our studies demonstrate that ONC201 and TR-57 induce highly similar and broad effects against multiple mitochondrial processes required for cell proliferation.

11.
Syst Biol Reprod Med ; 69(4): 296-309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098216

RESUMEN

Infertility is clinically defined as the inability to achieve pregnancy within 12 months of regular unprotected sexual intercourse and affects 15% of couples worldwide. Therefore, the identification of novel biomarkers that can accurately predict male reproductive health and couples' reproductive success is of major public health significance. The objective of this pilot study is to test whether untargeted metabolomics is capable of discriminating reproductive outcomes and understand associations between the internal exposome of seminal plasma and the reproductive outcomes of semen quality and live birth among ten participants undergoing assisted reproductive technology (ART) in Springfield, MA. We hypothesize that seminal plasma offers a novel biological matrix by which untargeted metabolomics is able to discern male reproductive status and predict reproductive success. The internal exposome data was acquired using UHPLC-HR-MS on randomized seminal plasma samples at UNC at Chapel Hill. Unsupervised and supervised multivariate analyses were used to visualize the differentiation of phenotypic groups classified by men with normal or low semen quality based on World Health Organization guidelines as well as by successful ART: live birth or no live birth. Over 100 exogenous metabolites, including environmentally relevant metabolites, ingested food components, drugs and medications, and metabolites relevant to microbiome-xenobiotic interaction, were identified and annotated from the seminal plasma samples, through matching against the NC HHEAR hub in-house experimental standard library. Pathway enrichment analysis indicated that fatty acid biosynthesis and metabolism, vitamin A metabolism, and histidine metabolism were associated sperm quality; while pathways involving vitamin A metabolism, C21-steroid hormone biosynthesis and metabolism, arachidonic acid metabolism, and Omega-3 fatty acid metabolism distinguished live birth groups. Taken together, these pilot results suggest that seminal plasma is a novel matrix to study the influence of the internal exposome on reproductive health outcomes. Future research aims to increase the sample size to validate these findings.


Asunto(s)
Exposoma , Análisis de Semen , Embarazo , Femenino , Masculino , Humanos , Semen/metabolismo , Proyectos Piloto , Vitamina A/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901842

RESUMEN

Triple negative breast cancer (TNBC) is a subtype of breast cancer with typically poorer outcomes due to its aggressive clinical behavior and lack of targeted treatment options. Currently, treatment is limited to the administration of high-dose chemotherapeutics, which results in significant toxicities and drug resistance. As such, there is a need to de-escalate chemotherapeutic doses in TNBC while also retaining/improving treatment efficacy. Dietary polyphenols and omega-3 polyunsaturated fatty acids (PUFAs) have been demonstrated to have unique properties in experimental models of TNBC, improving the efficacy of doxorubicin and reversing multi-drug resistance. However, the pleiotropic nature of these compounds has caused their mechanisms to remain elusive, preventing the development of more potent mimetics to take advantage of their properties. Using untargeted metabolomics, we identify a diverse set of metabolites/metabolic pathways that are targeted by these compounds following treatment in MDA-MB-231 cells. Furthermore, we demonstrate that these chemosensitizers do not all target the same metabolic processes, but rather organize into distinct clusters based on similarities among metabolic targets. Common themes in metabolic targets included amino acid metabolism (particularly one-carbon and glutamine metabolism) and alterations in fatty acid oxidation. Moreover, doxorubicin treatment alone generally targeted different metabolites/pathways than chemosensitizers. This information provides novel insights into chemosensitization mechanisms in TNBC.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Metabolómica/métodos , Ácidos Grasos Omega-3/uso terapéutico , Doxorrubicina/uso terapéutico , Línea Celular Tumoral
13.
Pediatr Res ; 94(1): 135-142, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36627359

RESUMEN

BACKGROUND: The metabolomics profiles of maternal plasma during pregnancy and cord plasma at birth might influence fetal growth and birth anthropometry. The objective was to examine how maternal plasma and umbilical cord plasma metabolites are associated with newborn anthropometric measures, a known predictor of future health outcomes. METHODS: Pregnant women between 24 and 28 weeks of gestation were recruited as part of a prospective cohort study. Blood samples from 413 women at enrollment and 787 infant cord blood samples were analyzed using the Biocrates AbsoluteIDQ® p180 kit. Multivariable linear regression models were used to examine associations of cord and maternal metabolites with infant anthropometry at birth. RESULTS: In cord blood samples from this rural cohort from New Hampshire of largely white residents, 13 metabolites showed negative associations, and 10 metabolites showed positive associations with birth weight Z-score. Acylcarnitine C5 showed negative association, and 4 lysophosphatidylcholines showed positive associations with birth length Z-score. Maternal blood metabolites did not significantly correlate with birth weight and length Z-scores. CONCLUSIONS: Consistent findings were observed for several acylcarnitines that play a role in utilization of energy sources, and a lysophosphatidylcholine that is part of oxidative stress and inflammatory response pathways in cord plasma samples. IMPACT: The metabolomics profiles of maternal plasma during pregnancy and cord plasma at birth may influence fetal growth and birth anthropometry. This study examines the independent effects of maternal gestational and infant cord blood metabolomes across different classes of metabolites on birth anthropometry. Acylcarnitine species were negatively associated and glycerophospholipids species were positively associated with weight and length Z-scores at birth in the cord plasma samples, but not in the maternal plasma samples. This study identifies lipid metabolites in infants that possibly may affect early growth.


Asunto(s)
Sangre Fetal , Metabolómica , Recién Nacido , Lactante , Humanos , Embarazo , Femenino , Peso al Nacer , Estudios Prospectivos , Sangre Fetal/metabolismo , Cordón Umbilical
14.
Exposome ; 3(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38550543

RESUMEN

Environmental factors affecting health and vulnerability far outweigh genetics in accounting for disparities in health status and longevity in US communities. The concept of the exposome, the totality of exposure from conception onwards, provides a paradigm for researchers to investigate the complex role of the environment on the health of individuals. We propose a complementary framework, community-level exposomics, for population-level exposome assessment. The goal is to bring the exposome paradigm to research and practice on the health of populations, defined by various axes including geographic, social, and occupational. This framework includes the integration of community-level measures of the built, natural and social environments, environmental pollution-derived from conventional and community science approaches, internal markers of exposure that can be measured at the population-level and early responses associated with health status that can be tracked using population-based monitoring. Primary challenges to the implementation of the proposed framework include needed advancements in population-level measurement, lack of existing models with the capability to produce interpretable and actionable evidence and the ethical considerations of labeling geographically-bound populations by exposomic profiles. To address these challenges, we propose a set of recommendations that begin with greater engagement with and empowerment of affected communities and targeted investment in community-based solutions. Applications to urban settings and disaster epidemiology are discussed as examples for implementation.

15.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500483

RESUMEN

Folate (vitamin B9) is involved in one-carbon transfer reactions and plays a significant role in nucleic acid synthesis and control of cellular proliferation, among other key cellular processes. It is now recognized that the role of folates in different stages of carcinogenesis is complex, and more research is needed to understand how folate reactions become dysregulated in cancers and the metabolic consequences that occur as a result. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism expressed in many tissues, is ubiquitously downregulated in cancers and is not expressed in cancer cell lines. The RT4 cell line (derived from papillary bladder cancer) which expresses high levels of ALDH1L1 represents an exception, providing an opportunity to explore the metabolic consequences of the loss of this enzyme. We have downregulated this protein in RT4 cells (shRNA driven knockdown or CRISPR driven knockout) and compared metabolomes of ALDH1L1-expressing and -deficient cells to determine if metabolic changes linked to the loss of this enzyme might provide proliferative and/or survival advantages for cancer cells. In this study, cell extracts were analyzed using Ultra High Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-HR-MS). A total of 13,339 signals were identified or annotated using an in-house library and public databases. Supervised and unsupervised multivariate analysis revealed metabolic differences between RT4 cells and ALDH1L1-deficient clones. Glycine (8-fold decrease) and metabolites derived from S-adenosylmethionine utilizing pathways were significantly decreased in the ALDH1L1-deficient clones, compared with RT4 cells. Other changes linked to ALDH1L1 downregulation include decreased levels of amino acids, Krebs cycle intermediates, and ribose-5-phosphate, and increased nicotinic acid. While the ALDH1L1-catalyzed reaction is directly linked to glycine biosynthesis and methyl group flux, its overall effect on cellular metabolism extends beyond immediate metabolic pathways controlled by this enzyme.


Asunto(s)
Ácido Fólico , Neoplasias , Humanos , Ácido Fólico/metabolismo , Glicina/metabolismo , Retinal-Deshidrogenasa/metabolismo , Metilación , Familia de Aldehído Deshidrogenasa 1/metabolismo , S-Adenosilmetionina/metabolismo , Metabolómica
16.
Int J Dent ; 2022: 7544864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059915

RESUMEN

Objective: The concentrations of endogenous metabolites in saliva can be altered based on the systemic condition of the hosts and may, in theory, serve as a reflection of systemic disease progression. Hemoglobin A1C is used clinically to measure long-term average glycemic control. The aim of the study was to demonstrate if there were differences in the salivary metabolic profiles between well and poorly controlled type 1 and type 2 subjects with diabetes. Subjects and Methods. Subjects with type 1 and type 2 diabetes were enrolled (n = 40). The subjects were assigned to phenotypic groups based on their current level of A1C: <7 = well-controlled and >7 = poorly controlled. Demographic data, age, gender, and ethnicity, were used to match the two phenotypic groups. Whole saliva samples were collected and immediately stored at -80°C. Samples were spiked using an isotopically labeled internal standard and analyzed by UPLC-TOF-MS using a Waters SYNAPT G2-Si mass spectrometer. Results: Unsupervised principal components analysis (PCA) and orthogonal partial least squares regression discrimination analysis (OPLS-DA) were used to define unique metabolomic profiles associated with well and poorly controlled diabetes based on A1C levels. Conclusion: OPLS-DA demonstrates good separation of well and poorly controlled in both type 1 and type 2 diabetes. This provides evidence for developing saliva-based monitoring tools for diabetes.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36011897

RESUMEN

Tobacco use is a major public health concern and is linked to myriad diseases, including cancer. The link between tobacco use and oral cancer, specifically, is very strong, making tobacco use one of the primary risk factors for oral cancer. While this association is well known, the underlying biochemical changes that result from tobacco use, and how this links to metabolic phenotypes of oral cancer, is not well understood. To address this knowledge gap, a combination of literature reviews and metabolomics studies were performed to identify commonalities in metabolic perturbations between tobacco use and oral cancers. Metabolomics analysis was performed on pooled reference urine from smokers and non-smokers, healthy and malignant oral tissues, and cultured oral cells with or without treatment of the well-known tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Alterations in amino acid metabolism, carbohydrates/oxidative phosphorylation, fatty acid oxidation, nucleotide metabolism, steroid metabolism, and vitamin metabolism were found to be shared between tobacco use and oral cancer. These results support the conclusion that tobacco use metabolically reprograms oral cells to support malignant transformation through these pathways. These metabolic reprogramming events may be potential targets to prevent or treat oral cancers that arise from tobacco use.


Asunto(s)
Neoplasias de la Boca , Nitrosaminas , Carcinógenos/metabolismo , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/epidemiología , Nitrosaminas/análisis , Nicotiana/química , Uso de Tabaco/efectos adversos , Uso de Tabaco/epidemiología
18.
Food Chem Toxicol ; 166: 113204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679974

RESUMEN

The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 µg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.


Asunto(s)
Celulosa , Nanoestructuras , Células CACO-2 , Celulosa/química , Celulosa/toxicidad , Humanos , Nanoestructuras/química , Nanoestructuras/toxicidad , Permeabilidad , Uniones Estrechas
19.
Nutrients ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631131

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is notoriously aggressive and has poorer outcomes as compared with other breast cancer subtypes. Due to a lack of targeted therapies, TNBC is often treated with chemotherapeutics as opposed to hormone therapy or other targeted therapies available to individuals with estrogen receptor positive (ER+) breast cancers. Because of the lack of treatment options for TNBC, other therapeutic avenues are being explored. Metabolic reprogramming, a hallmark of cancer, provides potential opportunities to target cancer cells more specifically, increasing efficacy and reducing side effects. Nutrients serve a significant role in metabolic processes involved in DNA transcription, protein folding, and function as co-factors in enzyme activity, and may provide novel strategies to target cancer cell metabolism in TNBC. This article reviews studies that have investigated how nutrients/nutraceuticals target metabolic processes in TNBC cells alone or in combination with existing drugs to exert anticancer effects. These agents have been shown to cause perturbations in many metabolic processes related to glucose metabolism, fatty acid metabolism, as well as autophagy and oxidative stress-related metabolism. With this information, we present the potential of nutrients as metabolism-directed anticancer agents and the potential for using these agents alone or in cocktails as a new direction for TNBC therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Suplementos Dietéticos , Humanos , Nutrientes , Neoplasias de la Mama Triple Negativas/metabolismo
20.
Metabolites ; 12(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35629957

RESUMEN

ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism, is highly expressed in the liver. It regulates the overall flux of folate-bound one-carbon groups by converting 10-formyltetrahydrofolate to tetrahydrofolate and CO2 in a NADP+-dependent reaction. Our previous study revealed that Aldh1l1 knockout (KO) mice have an altered liver metabotype with metabolic symptoms of folate deficiency when fed a standard chow diet containing 2 ppm folic acid. Here we performed untargeted metabolomic analysis of liver and plasma of KO and wild-type (WT) male and female mice fed for 16 weeks either standard or folate-deficient diet. OPLS-DA, a supervised multivariate technique that was applied to 6595 and 10,678 features for the liver and plasma datasets, respectively, indicated that genotype and diet, alone or in combination, gave distinct metabolic profiles in both types of biospecimens. A more detailed analysis of affected metabolic pathways based on most confidently identified metabolites in the liver and plasma (OL1 and OL2a ontology level) indicated that the dietary folate restriction itself does not fully recapitulate the metabolic effect of the KO. Of note, dietary folate withdrawal enhanced the metabolic perturbations linked to the ALDH1L1 loss only for a subset of metabolites. Importantly, both the ALDH1L1 loss and dietary folate deficiency produced sex-specific metabolic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...